
School of
Computer Science

Information
Management Group

HCW

HCW— HuCEL Technical Report 3, June 2009

HuCEL: Links Experiment Manual

Paul Waring

Human Centred Web Lab
School of Computer Science
University of Manchester
UK

The World Wide Web contains a vast corpus of information de-

scribing a variety of events, but this information is poorly inter-

connected. The aim of the HuCEL project is to provide a solution

to this problem by automatically generating associative links be-

tween related events. This manual describes how to re-run an

investigation into how users perceive the relatedness of links gen-

erated by keywords from humans against those from an automated

parser.

Human Centred Web



2

HuCEL

The aim of the HuCEL project is to investigate how related events can be connected
on the Web, in order to improve navigation of the hypertext space and enable users
to serendipitously discover new information. The HuCEL Web pages may be found
at: http://hcw.cs.manchester.ac.uk/research/hucel/.

HuCEL Reports

This report is in the series of HCW HuCEL technical reports. Other reports in this
series may be found in our data repository, at http://hcw-eprints.cs.man.ac.

uk/view/subjects/hucel.html. Reports from other Human Centred Web projects
are also available at http://hcw-eprints.cs.manchester.ac.uk/.



HuCEL: Links Experiment Manual

Contents

1 Introduction 1

2 System Requirements 1

3 Data Storage 1

4 Installation 5

5 Flow Control 5

6 Common Errors 6

7 Summary 6

8 Associated Files 7

Human Centred Web Lab
School of Computer Science
University of Manchester
Kilburn Building
Oxford Road
Manchester
M13 9PL
UK

tel: +44 161 275 7821

http://hcw.cs.manchester.ac.uk/

Corresponding author:
Paul Waring
tel: +44 (161) 275 6239
pwaring@cs.man.ac.uk



Section 1 Introduction 1

1 Introduction

This manual explains how to re-run the links experiment of the HuCEL project,
which is an investigation into how users perceive the relatedness of links generated
by keywords from humans against those from an automated parser.

The experiment can be re-run without any changes to the code supplied with
this manual. However, some work will be required on the part of the investigator,
both to set up the experiment and to recruit participants. Furthermore, as this
experiment is part of a series, it requires the keywords obtained in the previous
two HuCEL experiments [2, 1] in order to generate all the links required. These
keywords can be obtained either by utilising the results from the initial investigations
or by re-running the two experiments again.

It is also possible to re-analyse the data collected during the first run of the
experiment, conducted between 27 October 2008 and 6 December 2008.

This report assumes that the reader is familiar with the PHP programming
language and basic SQL queries, and is capable of uploading files to a publicly
accessible Web server using a mechanism such as FTP.

2 System Requirements

In order to run the experiment code, certain minimum software requirements must
be met. The experiment may run under older versions of software, but no guarantees
are made as to whether this will be the case, and users are strongly recommended
to use the latest versions where possible. The minimum requirements include:

• Web server capable of supporting PHP 5 – Apache 2.2 is recommended.

• PHP 5.2.01

• SQLite 2.1.02

The experiment code should run on any operating system and platform which is
capable of meeting the above system requirements. However, all instructions in this
report assume a Unix-like operating system such as Linux, FreeBSD or Mac OS X.

3 Data Storage

All of the data collected in the course of the experiment is stored in an SQLite3

database. To ensure maximum backwards compatibility, SQLite version 2 is used.
The majority of configuration options are also stored in the database, so it is

possible to re-run the experiment with different Web pages and keywords without
changing the underlying PHP code. Furthermore, the HTML output is generated

1Support for accessing SQLite databases in built in to PHP 5 by default, so no action should be
required to activate this functionality unless it has been explicitly disabled.

2The database used for this experiment is created in SQLite 2. Attempting to use a database
created in SQLite 3 will result in error messages suggesting a ‘corrupt database’.

3http://www.sqlite.org/



2 Paul Waring

from templates, so the look and feel of the experiment can also be altered without
changing the PHP code. It should only be necessary to edit experiment.php if
changes to the logic of the experiment are required – for example, if users were to
be shown more than one link from each group.

The schemas for the various database tables are described in the following sec-
tions.

Table 1: Schema for participants table

Field Name Data Type Additional Notes

id INTEGER PRIMARY KEY Unique number for
identifying individual
participants

starttime INTEGER NOT NULL Timestamp for begin-
ning of experiment

endtime INTEGER Timestamp for end of
experiment (0 if user
does not complete)

gender CHAR(1) NOT NULL Set to ‘m’ or ‘f’

age VARCHAR(10) NOT NULL Age range of the user

time web VARCHAR(10) NOT NULL Time user spends on
Web each week

english native CHAR(1) NOT NULL ‘y’ if user is a native En-
glish speaker, ‘n’ if not

Table 2: Schema for webpages config table

Field Name Data Type Additional Notes

id INTEGER PRIMARY KEY Unique number for
identifying individual
Web pages

original url VARCHAR(255) NOT NULL Original URL of the
Web page

local path VARCHAR(255) Path to the local copy of
the Web page

Table 3: Schema for describe links table

Field Name Data Type Additional Notes



Section 3 Data Storage 3

id INTEGER PRIMARY KEY Unique number for
identifying individual
links

webpage INTEGER NOT NULL Foreign key on
webpages config.id

url VARCHAR(255) NOT NULL URL of the page the
link leads to

title VARCHAR(255) NOT NULL Title of the page the
link leads to

summary VARCHAR(255) NOT NULL Summary of the page
the link leads to

ratings count INTEGER NOT NULL Number of ratings this
link has received

Table 4: Schema for related links table

Field Name Data Type Additional Notes

id INTEGER PRIMARY KEY Unique number for
identifying individual
links

webpage INTEGER NOT NULL Foreign key on
webpages config.id

url VARCHAR(255) NOT NULL URL of the page the
link leads to

title VARCHAR(255) NOT NULL Title of the page the
link leads to

summary VARCHAR(255) NOT NULL Summary of the page
the link leads to

ratings count INTEGER NOT NULL Number of ratings this
link has received

Table 5: Schema for parser links table

Field Name Data Type Additional Notes

id INTEGER PRIMARY KEY Unique number for
identifying individual
links

webpage INTEGER NOT NULL Foreign key on
webpages config.id



4 Paul Waring

url VARCHAR(255) NOT NULL URL of the page the
link leads to

title VARCHAR(255) NOT NULL Title of the page the
link leads to

summary VARCHAR(255) NOT NULL Summary of the page
the link leads to

ratings count INTEGER NOT NULL Number of ratings this
link has received

Table 6: Schema for link ratings table

Field Name Data Type Additional Notes

participant INTEGER NOT NULL Foreign key on
participants.id

starttime INTEGER NOT NULL Timestamp for when
user began looking at
this page

endtime INTEGER NOT NULL Timestamp for when
user finished looking at
this page (0 if user
quit experiment at this
point)

webpage INTEGER NOT NULL Foreign key on
webpages config.id

describe link id INTEGER NOT NULL Foreign key on
describe links.id

describe link rating INTEGER NOT NULL Rating given to
describe link id

related link id INTEGER NOT NULL Foreign key on
related links.id

related link rating INTEGER NOT NULL Rating given to
related link id

parser link id INTEGER NOT NULL Foreign key on
parser links.id

parser link rating INTEGER NOT NULL Rating given to
parser link id

link order CHAR(3) NOT NULL Order in which the links
were displayed on the
page

link preference CHAR(1) NOT NULL Link which user pre-
ferred



Section 4 Installation 5

qualitative feedback TEXT Feedback left by the
user on the links (op-
tional)

For the fields url, title and summary in the tables describe links, related links

and parser links are taken directly from the results of a Yahoo! search API query.

4 Installation

Once all of the system requirements have been fulfilled, installing the code is a simple
case of uploading the files to a publicly accessible directory (e.g. public html) via a
mechanism such as FTP or the scp command. After uploading the files, the correct
permissions must be set in order for the experiment to run correctly.

The majority of files within the experiment will only require read access for
all users (chmod 644) and directories will require read and execute access (chmod
755). However, there are some exceptions where files or directories require different
permissions:

• templates c – all users should have read, write and execute access (chmod
777).

• data.db – all users should have read, write and execute access (chmod 777).

In addition to the above requirements, the directory which contains all of these
files (e.g. public html) needs to allow all users read, write and execute access.

5 Flow Control

The flow of the experiment code follows a simple process:

1. Find out which page the user has just submitted.

2. Process the form data from this page and save it to the database.

3. Decide what the next page to display should be – at most there will be two
options to choose from.

4. Fetch any information from the database which is required to display the next
page (e.g. Web page configuration details).

5. Display the next page.

There are two ways for the participant to break this process. Before the ex-
periment begins, the user is shown an example page and asked if he understands
what is required during the experiment. If the user selects ‘no’ at this point, he will



6 REFERENCES

be redirected to the final page and no useful data will be recorded. Alternatively,
the user can finish the experiment by closing the browser window. In this case,
any information entered on the current page will not be saved, but all data entered
on previous pages will be retained. Finally, if the participant ends the experiment
before the final page, no end time will be recorded.

6 Common Errors

Some common error messages which may occur when installing the experiment code
include:

• ‘Unable to open database file’: Usually indicates that the permissions are not
set correctly on the directory which contains the SQLite database.

• ‘Corrupt database’: Indicates that the database is in SQLite 3 format, as
opposed to SQLite 2.

• Blank page displaying: Suggests that the permissions on the templates c

directory are not set correctly.

7 Summary

Using the instructions contained in this manual, readers should be able to re-run
the HuCEL links experiment or extend the experiment to capture additional data.
The additional files included with this manual also allow readers to re-analyse the
data collected in the original run of the experiment.

References

[1] Paul Waring. HuCEL: Keywords Experiment II Manual. Technical Report,
University of Manchester, http://hcw-eprints.cs.man.ac.uk/89/, 2009.

[2] Paul Waring. HuCEL: Keywords Experiment Manual. Technical Report, Uni-
versity of Manchester, http://hcw-eprints.cs.man.ac.uk/88/, 2009.



Section 8 Associated Files 7

8 Associated Files

In addition to this manual, the repository also includes the following files:

• experiment-code.zip: A compressed file containing all of the code necessary
to re-run the experiment, including an SQL file for recreating the database.

• data.db: An SQLite database containing all of the data obtained from the
experiment.

Within the experiment-code.zip archive are the following folders and files:

• experiment.php: The PHP code which provides an interface between the
user and the database, responsible for controlling the flow of the experiment
as described in Section 5.

• webpages: Directory containing static copies of all the Web pages used in our
run of the experiment, so that all participants will see the same page.

• templates: Smarty4 templates for all the pages which will be shown to par-
ticipants in the course of the experiment.

• index.html: The first page of the experiment, which participants should be
directed to once the code is up and running.

• style.css: Stylesheet for the experiment.

• validation.js: Client-side validation routines (JavaScript).

• create.sql: SQL commands to recreate the database structure and populate
it with initial configuration.

• empty.db: An SQLite database set up with all the required tables and config-
uration (including all the links generated from the two keywords experiments),
but no user data.

4Smarty is a template engine for PHP. It can be downloaded from http://www.smarty.net and
is available as a package for numerous platforms.


